
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2008

Noise analysis for switched-capacitor circuitry
Yingkun Gai
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Gai, Yingkun, "Noise analysis for switched-capacitor circuitry" (2008). Retrospective Theses and Dissertations. 15485.
https://lib.dr.iastate.edu/rtd/15485

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15485&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15485&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15485&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15485&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F15485&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15485?utm_source=lib.dr.iastate.edu%2Frtd%2F15485&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Noise analysis for switched-capacitor circuitry 

Equation Chapter 1 Section 1 

by 

 
Yingkun Gai 

 

 

 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

 

Major:  Electrical Engineering 

 
Program of Study Committee: 

Randall Geiger, Major Professor 
Degang Chen 

Zhengdao Wang 

 

 

 

Iowa State University 

Ames, Iowa 

2008 

Copyright  © Yingkun Gai, 2008.  All rights reserved.



www.manaraa.com

1460094
 

1460094
 2009



www.manaraa.com

 ii 

 

TABLE OF CONTENTS 

LIST OF FIGURES ..................................................................................................... iv 

LIST OF TABLES.........................................................................................................v 

ABSTRACT ................................................................................................................ vi 

Chapter 1 OVERVIEW .................................................................................................1 
1.1 Introduction................................................................................................... 1 
1.2 Resistance of Switched-capacitor circuits .................................................... 1 

1.2.1 Derivation of Resistance of SC Circuits ................................................... 2 
1.2.2 The Advantage of SC Circuits as a Resistor............................................. 5 
1.2.3 Issues in a SC Circuits .............................................................................. 7 

1.3 Conclusion .................................................................................................. 11 

Chapter 2 NOISE ANALYSIS FOR BASIC SC CIRCUITRY ..................................13 
2.1 Noise PSD Analysis for SC Circuits........................................................... 13 

2.1.1 Some Useful Theorem ............................................................................ 13 
2.1.2 Power Spectral Density (PSD)................................................................ 15 
2.1.3 Noise PSD of Continuous-time Circuits ................................................. 16 
2.1.4 PSD of Sampled Noise............................................................................ 16 
2.1.5 Conclusion .............................................................................................. 27 

Chapter 3 NOISE CALCULATION FOR TWO WIDELY USED SC CIRCUITS ...28 
3.1 Flip-around Structure .................................................................................. 28 

3.1.1 Derivation of the PSD of Noise by Method I ......................................... 28 
3.1.2 Simulation Result.................................................................................... 32 
3.1.3 Comparison ............................................................................................. 35 
3.1.4 Derivation of the PSD of Noise by Method II ........................................ 36 

3.2 Charge-redistribution Structure .................................................................. 36 
3.2.1 Derivation of the PSD of Noise .............................................................. 36 

3.3 Comparison between PSD Analysis and kT/C Analysis ............................ 39 
3.4 Conclusion .................................................................................................. 41 

Chapter 4 CONTINUOUS-TIME NOISE ANALYSIS ..............................................42 
4.1 Introduction................................................................................................. 42 
4.2 Figure of Merit θ ......................................................................................... 42 

4.2.1 Amplifier Gain and BW Requirements................................................... 43 
4.2.2 Sizing of the Switches............................................................................. 45 
4.2.3 Second Order System.............................................................................. 47 

4.3 Flip-around Structure .................................................................................. 48 
4.4 Charge-redistribution Structure .................................................................. 56 
4.5 Noise Accumulation of Multiple Stages in ADC ....................................... 59 
4.6 Conclusion .................................................................................................. 61 

Chapter 5 SUMMARY ................................................................................................62 

BIBLIOGRAPHY........................................................................................................63 



www.manaraa.com

 iii 

 

ACKNOWLEDGEMENTS.........................................................................................66 



www.manaraa.com

 iv 

 

LIST OF FIGURES 
Figure 1. Switched-capacitor circuit 2 
Figure 2. Equivalent resistor circuit 3 
Figure 3. Clock waveforms for the switched-capacitor circuits 3 
Figure 4. Bilinear switched-capacitor realization of a resistor 4 
Figure 5. Integrator 5 
Figure 6. Switched-capacitor integrator 6 
Figure 7. Channel charge distribution 7 
Figure 8. Charge-redistribution gain stage 8 
Figure 9. Clock feed through in SC circuit 8 
Figure 10. Single-transistor sampler 9 
Figure 11. Equivalent Circuit of Sampler in a) Track Mode b) Hold Mode 10 
Figure 12. Timing Diagram of Sampling Clock 10 
Figure 13. First order low pass filter 16 
Figure 14. Noise power spectral density 17 
Figure 15. First order switched-capacitor low pass filter 17 
Figure 16. Timing diagram for sampler circuit 18 
Figure 17. Continuous-time track and hold operation 18 
Figure 18. Discrete-time sampled sequence 18 
Figure 19. Sampled and hold noise 19 
Figure 20. Spectrum of sampled noise 23 
Figure 21. Schematic of the simplest switched-capacitor circuit 24 
Figure 22. Power spectral density of the total undersampled noise sqrt(Sc) 25 
Figure 23. Power spectral density of sampled noise sqrt(Ss) 26 
Figure 24. Flip-around switched-capacitor amplifier 29 
Figure 25. Clock signal 29 
Figure 26. Circuits during the track phase 30 
Figure 27. Flip-around simulation schematic 32 
Figure 28. Noise spectrum during hold phase 33 
Figure 29. Sampled noise spectrum at the end of hold phase 35 
Figure 30. Basic switched-capacitor gain stage 37 
Figure 31. Equivalent circuit in track phase 37 
Figure 32. Equivalent circuit in hold phase Φ2 38 
Figure 33. S/H noise of flip-around structure 39 
Figure 34. S/H noise of basic structure 40 
Figure 35. Settling of SC amplifier 44 
Figure 36. Lossy integrator 47 
Figure 37. Flip-around SC circuit 48 
Figure 38. Clock signal 49 
Figure 39. Switch noise sources in hold phase 49 
Figure 40. Basic Switched-Capacitor Gain Stage 56 
Figure 41. Noise sources in basic gain stage during both clock phases 57 
Figure 42. Noise propagating between two stages in an ADC 60 



www.manaraa.com

 v 

 

LIST OF TABLES 

 
Table 1. Simulation parameters .............................................................................................. 24 
Table 2. Simulation parameters .............................................................................................. 33 
Table 3. Noise contributions of switches during Ф2 .............................................................. 53 
Table 4. Critical Switch Resistances for Continuous-Time Noise Accumulation.................. 55 
Table 5. Noise contributions of switches during Φ2 ............................................................... 58 
Table 6. Critical Switch Resistances for Continuous-Time Noise Accumulation.................. 60 

 



www.manaraa.com

 vi 

 

ABSTRACT 

 

Track and hold circuits play a key role in mixed-signal, analog to digital interfaces. 

They are often used as part of the analog to digital conversion (ADC) process whereby a 

time-varying analog signal is sampled at the transition of a clock signal and subsequently 

held for a part of the conversion process. This approach is used, in part, because the 

remainder of the ADC conversion process is adversely affected if the input signal varies 

during the conversion.  

Noise, and in particular thermal noise, is recognized as a major bottleneck limiting 

the performance of switched-capacitor circuits and it is essential that all of the major 

contributors to noise are appropriately considered when designing any switched-capacitor 

circuit. Invariably, switched-capacitor (SC) circuit designers only discuss noise generated in 

the track mode when reporting noise performance and correspondingly ignore noise 

generated in the hold mode. In particular, most authors simply use the well-known 

expression kT/C to represent the variance of sampled thermal noise present on a sampling 

capacitor[16]-[19]. The spectrum of the continuous-time sample and hold noise has been 

discussed as the switches capacitor circuitry field evolved [1]-[3] but the early authors didn’t 

discuss the relationship between the spectrum of the sample and hold noise and the sampled 

noise characterized with the kT/C expression. More important, noise present during the hold 

mode which affects subsequent sampling has not been discussed in the literature. In the thesis, 

the continuous noise which is generated during the second phase of a SC circuit will be 

compared to the S/H noise.  

In chapter two of this thesis, a numerical comparison between the RMS value of the 

continuous-time S/H noise and the sampled kT/C noise is presented. In chapter three, thermal 

noise present during the hold mode for two switched-capacitor circuits which are often used 
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in analog to digital converters are investigated and compared with the standard sampled noise 

expression. In chapter four, it is shown that when these switched-capacitor circuits are used 

in an analog to digital converter with low speed and small resolution, the continuous-time 

hold noise can be justifiably neglected but when the sample frequency and resolution get 

higher, the noise that is generated in the hold phase is not negligible and can cause significant 

performance degradation of the system.  
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CHAPTER 1 OVERVIEW 
The class of analog circuits using periodic sampling techniques is called analog 

sampled data circuits. In this chapter, author will introduce the background, development and 

problem of this type of circuits, especially noise in these sampled data circuits.  

 

1.1 Introduction 

Nowadays, sampled data circuits are widely used in integrated mixed signal systems. 

Such functions include switched-capacitor filters, analog to digital converters and so on.  

The sampling of analog signals was discussed as early as the 1870’s when James 

Clark Maxwell developed the fundamental theory of sampled data circuits—the equivalent 

resistance of a periodic switched-capacitor which is shown in equation (1.1) [4] and will be 

explained in detail in a later section of this chapter. 

 cTR
kC

=  (1.1) 

During the late 1950s and early 1960s, the theory of sampled data circuits evolved [5]. 

However, they were not used widely until semiconductor technology was developed so that 

switches could be embedded into integrated circuits. In particular, Hodges and Gray of 

Berkeley and Brodersen/Copeland [26][27] found switches can be practically realized with 

MOSFETS[6]-[13]. From then on, sampled data circuits or switched-capacitor circuits by 

using MOSFETS as switches have been widely used in analog design. 

1.2 Resistance of Switched-capacitor circuits 

In continuous-time analog circuits, capacitors, resistors and active components, 

especially the previous two, determine the performance of the entire circuits. However, it is 

at high cost or even impossible to accurately control these components due to inherent 

variations in process and environment.  
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Let us take a filter as an example. Resistors and capacitors must be accurately defined 

to meet stringent specifications such as bandwidth, center frequency or quality factor. 

However, because of process variations alone, variations of the value of integrated resistors 

and capacitors can be as large as 30%. This causes a serious problem in filter design where 

effective RC products often must be accurate to well under 1%. Another problem is that, if 

the center frequency of the filter is relatively low, it requires a large value for resistors and 

this in turn requires large area.  

After MOSFETs were available, some attempted to use MOSFETs as resistors. 

However, the nonlinear dependence of the resistors on the gate to source and drain to source 

voltage made the circuits highly nonlinear.  

Switched-capacitor circuits are able to jointly minimize the concerns about large 

variability in component values and large area required for low frequency system poles.  . 

Additionally, switched-capacitor circuits usually relax the requirement of bandwidth of the 

Op Amp compared to what is required in comparable continuous-time circuits.  

1.2.1 Derivation of Resistance of SC Circuits 

It is well-known that the switched-capacitor of Figure 1 and the resistor of Figure 2 

can be essentially equivalent if the clock frequency of the complimentary non-overlapping 

clocks Φ1 and Φ2, of Figure 3, is high.  

1φ 2φ

 

Figure 1. Switched-capacitor circuit 
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Figure 2. Equivalent resistor circuit 

1φ

2φ

t

t

Tc

 

Figure 3. Clock waveforms for the switched-capacitor circuits 

The current carried by the resistor R in Figure 2 is given by I=(V1-V2)/R.  

In Figure 1, the average current flow from V1 to V2 is the ratio of the transferred 

charge to the clock period Tc as given by in one clock period 
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( )

( )

1 2
12

1 2

s

c

s c

C V V
I

T
C f V V

−
=

= −

 (1.2) 

Comparing (1.1) and (1.2), if flows that we can view the switched-capacitor as being 

equal to a resistor of value (CSfc
)-1. The circuit of Figure 1 is not a stray insensitive circuit. 

Parasitic capacitors will seriously affect the accuracy of the equivalent resistance value. In 

the following, several other switches capacitor circuits will be discussed as alternatives 

through of this thesis.  

Another well-known switched-capacitor circuit is shown in Figure 4. It can be easily 

seen that the equivalent resistor value of this switched-capacitor realization is:  

1φ 2φ

2φ 1φ

 

Figure 4. Bilinear switched-capacitor realization of a resistor 

 
4

cTR
C

=   (1.3) 

There are many other realizations of a resistor by using switched-capacitor circuits. It can 

even realize a negative resistor as well. So the general expression for the resistor equivalence 

of a switched-capacitor circuit can be written as: 

 cTR
mC

=  (1.4) 
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1.2.2 The Advantage of SC Circuits as a Resistor 

The well-known benefits that can be derived from SC circuitry can be seen by 

considering the integrator as an example. One of the simplest integrators is shown in Figure 5.  

 

Vin

C

R

  

Figure 5. Integrator 

 1
out inV V dt

RC
= − ∫  (1.5) 

The unity gain frequency is 1/RC. It depends on the absolute value of R and C. Due 

to process variation, integrated R and C component can vary by ±30% which is usually not 

tolerable in analog circuits.  

According to the forgoing theory in section 1.2, we can replace the resistor R by a 

switched-capacitor circuit. The switches can be realized by MOSFETS such as shown in 

Figure 6. 

The output of the circuit can be obtained by replacing R in equation (1.5) by 1/( fcCin). 

We can qualitatively analyze the circuit from another point of view. When Φ1 is closed, Cin 

will be charged up by Vin if given enough time. When Φ1 is opened and Φ2 is closed, the 

charge on Cin will be dumped on to CF. During the next period of operation, another charge 

from Vin will be dumped onto CF, resulting in an integration at the output.  
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Figure 6. Switched-capacitor integrator 

The unit gain frequency of the circuit shown in Figure 6 is fcCin/CF. This is equal to 

the ratio of the capacitors and a clock frequency. This can be accurate up to 0.1%. The 

switched-capacitor circuits improve the accuracy by around 300 times compared to what is 

achievable with a continuous-time RC integrator. 

Additionally, after Φ1 is opened and Φ2 is closed, the charge on Cin suddenly imparts 

a voltage at the null port of the Op Amp, causing the Op Amp to slew. So instead of 

operating in the linear region, the Op Amp will slew and the output will increase at the slew 

rate and then settle exponentially. With the large over-drive at the null-port of the Op Amp, 

the time required for the output of the Op Amp to reach the final valued decreases as to that 

required for the continuous-time RC integrator, thus relax the bandwidth requirement of the 

Op Amp.  

Amplifier with resistive feedback can be realized by switched-capacitors as well by 

using the same methods. For example the flip-around gain stage and the charge-redistribution 

gain stage.  

However, the switched-capacitor has several issues. In the following section, author 

will talk about problems exist in switched-capacitor circuits.  
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1.2.3 Issues in a SC Circuits 

1.2.3.1 Channel charge injection in switched-capacitor circuits 

When the MOSFET is “on”, charge will be stored on the channel capacitor. After the 

switch is turned off, the charge has to be dumped somewhere. It is not easy to determine how 

much charge will be dumped onto CL and how much will be dumped back to VIN. The way 

the charge is split depends on the magnitude of the clock signal, and magnitude of input 

signal, the wave shape of the clock signal and the impedance seen at both the drain and 

source of the switch. If it is an input dependent split, it will cause gain error, dc offset and 

nonlinearity in the SC integrated (shown in Figure 6) or in a SC filter. 

  

Figure 7. Channel charge distribution 

Channel charge injection can be eliminated by sequentially turning on and off 

switches. For example, in Figure 8, the input dependent channel charge injection will affect 

the charge on C1 at the end of Φ1, and during Φ2 when the charge on C1 is dumped onto C2, 

and cause gain error and nonlinearity of the circuit. If the M3 is turned off earlier than M1, 

than when M1 is turning off, the right node of C1 is floating and there is no way to charge C1 

up. Hence all the channel charge of M1 will go to VIN, making the circuit input independent. 

For more explanation, please refer to [14]. 
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Figure 8. Charge-redistribution gain stage 

1.2.3.2 Clock feed through 

Clock feed through is another issue of SC circuits.  

 

Figure 9. Clock feed through in SC circuit 

There is an overlap capacitor between the gate-source and gate-drain of the MOSFET, 

forming a voltage divider between the CLK signal and VOUT. Assuming the input is grounded, 

there will be an error voltage at VOUT which can be written as 

 ov
CK

ov H

WCV V
WC C

Δ =
+

 (1.6) 

Although there is an error voltage at the output, it is a constant value and can be 

regard as a constant offset voltage. Hence if it causes a problem in a given application, it can 

be eliminated by offset cancellation techniques.  
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1.2.3.3 Thermal noise 

Thermal noise is another issue of SC circuits and has become the bottleneck of using 

the SC circuits to achieve high resolution and high speed. The effects of thermal noise will be 

reviewed in this section. Take a 1st order SC circuit as an example as shown in Figure 10. 

When the switch is turned on in the first phase, it can be modeled as a resistor R as shown in 

Figure 10 (b). This is termed the track mode or sample mode of the sampling circuit. When 

the CLK is off in phase 2, it can be modeled by an open circuit as shown in Figure 10 (c). 

This is termed the hold mode of the sampling circuit. 

 

Figure 10. Single-transistor sampler a) transistor implementation of switch, b) track 

mode, c) hold mode 

Consider again the track and hold amplifier of Figure 10, during the track mode, the 

MOSFET is operating in the triode region and behaves as a resistor. During the hold mode, it 

acts as an open circuit. Any resistor, including the MOSFET when acting as a resistor in the 

track mode, is noisy and the dominant noise is often the thermal noise that is due to the 

random movement of electrons in the resistor. This can be modeled as a series noise voltage 

source as shown in Figure 11 (a). When the switch opens, the capacitor voltage is ideally 

VIN(kT), where T is the clock period and where it is assumed that the phase of the clock is 

such that time kT is near the end of the hold interval of the kth clock period. The actual 

voltage on the capacitor will differ from the ideal value by a noise voltage Vn(kT) due to the 

thermal noise coming from the switch resistance  that was present during the track mode. The 

clock phasing is shown in Figure 12. The noise voltage Vn(kT) is a noise sequence. 
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(a)                                 (b) 

Figure 11. Equivalent Circuit of Sampler in a) Track Mode b) Hold Mode 

   

Figure 12. Timing Diagram of Sampling Clock 

The noise power spectral density of a resistor R is equal to  

 4RS kTR=  (1.7) 

The transfer function from input to output is 

 ( ) 1
1

H jw
jwRC

=
+

 (1.8) 

The noise voltage on the capacitor during the track mode has noise spectral density 

 
( )VOUT

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

2
14kTR

1+ RCω
S  (1.9) 

where ω=2πf. The RMS noise voltage on the capacitor is given by 

 

0

4
1OUTRMSn V

f

S

=

∞
= =

+
⌠⎮
⌡∫
∞

df 2 2 2
f=0

kTR df
ω R C

V  (1.10) 

But, recall the definite integral 
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 ( )1
2

0
0

1
1 2

y
y

dy y
y

π
∞

−

=

∞

=
= =

+
⌠
⎮
⌡

tan  (1.11) 

It follows from a change of variables and this definite integral that  

 
OUTRMSn VS

∞
= =∫ df

f=0

kT
C

V  (1.12) 

Note this is independent of the size of the resistor R. This is because the noise 

spectral density within the bandwidth of the RC filter is proportional to R but the bandwidth 

is inversely proportional to R. So the total noise power is independent of R. This is often 

referred to the “kT/C” noise associated with a capacitive sampler. As an example, it thus 

follows that the RMS noise voltage sampled on a 1pF capacitor is 64.4μV. This analysis was 

undertaken in the continuous-time domain. To a sample and hold circuit, operation is done 

discretely, so in the next chapter, a discussion about the relationship between the discrete 

noise and continuous noise domains will be given.  

From equation (1.12), we find that the noise depends only on the value of capacitor. 

To reduce the thermal noise of the SC circuit, we have to increase the size of capacitor. 

However, this will decrease the speed of the circuit or increase the power consumption. 

Hence, the thermal voltage becomes a bottleneck of today’s high performance SC circuits.  

1.3 Conclusion 

In this chapter, we have briefly reviewed the history of switched-capacitor circuits. 

We have discussed the advantages and disadvantages of the SC circuits. The ratio of 

capacitors determines the accuracy of key characteristic of the circuits; for example the unity 

gain frequency of integrator. Hence, switched-capacitor circuits can improve accuracy 

compared to what is achieved with continuous-time circuits. It relaxes bandwidth 

requirement of Op Amp as well. However, SC circuits have input dependent channel charge 

injection, causing gain error, dc offset and nonlinearity to the circuits. And the overlap 
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capacitors between the gate and diffusion of MOSFETs cause clock feed through and an 

error voltage will appear at output node. However, these issues can be eliminated by 

sequentially turning on and off switches and offset cancellation methods. The other issue of 

the SC circuits is the thermal noise from the resistance of switches. The RMS value is 

inversely proportionally to the value of capacitors and independent of resistors. And thermal 

noise becomes the bottleneck of the high performance circuits nowadays.  
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CHAPTER 2 NOISE ANALYSIS FOR BASIC SC CIRCUITRY 
As stated in the chapter 1, for switched-capacitor networks, people usually use 

/kT C  to express the thermal noise voltage contributed by switched-capacitors. This 

equation is valid under the assumption that the bandwidth of thermal noise is much larger 

than the clock frequency, in other words, it is an oversampling circuit. However, the cut off 

frequency of the thermal noise in most cases exceed sampling rate by orders of magnitude. 

This results in an undersampling of the wideband noise components and aliasing of the high 

frequency back into low frequency. In this part, it will show that the RMS value or the power 

of the thermal noise calculated from the accurate spectrum analysis has the same order of 

magnitude of that from kT/C analysis. The accurate analysis will be discussed in this chapter. 

 

2.1 Noise PSD Analysis for SC Circuits 

In this section, the analysis and derivation will be given first to the 1st order (one pole) 

switched-capacitor low pass filter. The PSD analysis will be extended to two SC gain stages 

in the next chapter. Equation Chapter (Next) Section 1 

2.1.1 Some Useful Theorem 

Some well-known theorems that relate noise of a sampled signal to noise in a 

continuous signal are quite useful in relating noise in the continuous-time domain to the 

corresponding noise in the discrete-time domain. Four useful theorems will now be reviewed. 

Assume V(t) is a continuous-time zero-mean noise signal (with appropriate stationary 

properties)  and that the sequence <V(kT)> is a sampled version of V(t) sampled at times T, 

2T, … 

The RMS value of V(T) is defined to be  
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 T
2

RMS
0

T

1

T
V lim V (t)dtE

→∞

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫  (2.1) 

And the RMS value of the sequence  <V(kT)> is defined to be 

 ( )2
RMS

1

1

N
V̂ lim V kT

N

kN
E

=
→∞

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑  (2.2) 

where the operator E is the expected value operator. 

Theorem 1 If V(t) is a continuous-time zero-mean noise source and <V(kT)> is a 

sampled version of V(t) sampled at times T, 2T, …., then the RMS value of the continuous-

time waveform is the same as that of the sampled version of the waveform. This can be 

expressed as 
 RMS RMS

ˆV V=  (2.3) 

Theorem 2 If V(t) is a continuous-time zero-mean noise source and <V(kT)> is a 

sampled version  of V(t) sampled at times T, 2T, ….,then the standard deviation of the 

random variable  V(kT), denoted as 
V̂

σ satisfies the expression 

 ˆ RMS RMSV
ˆV Vσ = =  (2.4) 

Note: There are some parts of the hypothesis of these two theorems that have not 

been stated such as stationarity of the distribution and no correlation between samples spaced 

T seconds apart. Part of this theorem appears in [21]. 

Theorem 3 If V(t) is a continuous-time zero-mean noise source with power 

spectral density  SV, then the RMS value of the noise is given by 

 
dfRMS V

f=0
V S

∞
= ∫  (2.5) 

Theorem 4 The RMS value and the standard deviation of the noise voltage that 

occurs in the basic switched-capacitor sampler (Figure 15) is related to the capacitor value by 

the expression  

 
ˆRMS V

kTV
C

σ= =  (2.6) 
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This theorem follows from Theorem 2 and Theorem 3. The derivation for the RMS 

value of the sampled noise voltage was derived previously. 

As stated before, Theorem 2 will only be true when the samples are not correlated. 

However, as the track-mode circuit is actually a filter, there will be some correlation between 

the samples in most cases. So in the following chapter, another method PSD analysis will be 

used to calculate the RMS value of the sampled noise and will be compared to the kT/C 

analysis.   

2.1.2 Power Spectral Density (PSD) 

The frequency content of a signal is a very basic characteristic that distinguishes one 

signal from another. In general, a signal can be classified either as a finite (nonzero) average 

power (infinite energy) signal or as a finite energy (zero average power). The frequency 

domain expression of a finite energy signal can be obtained by Fourier transform of the 

corresponding time domain function.  

A non-zero stationary stochastic process is an infinite energy signal and hence its 

Fourier transform does not exist. The spectral characteristic of a stochastic signal is obtained 

by computing the Fourier transform of the autocorrelation function. i.e. the power spectral 

density (PSD) [20].  

Consider a linear time-invariant system (filter) that is characterized by its impulse 

response h(t) whose frequency response is H(f). Let x(t) be the input signal to the system and 

let y(t) be the output signal. The output of the system can be express as 

 ( ) ( ) ( )y t h x t dτ τ τ
∞

−∞

= −∫  (2.7) 

The power density spectrum of the output signal can be express in the form of 

 ( ) ( ) ( ) 2
y xS f S f H f=

 (2.8) 
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where ( )yS f  is the power spectral density of the output signal and ( )xS f  is the power 

density spectrum of the input signal. 

As the Theorem 3 says in previous section, if V(t) is a continuous-time zero-mean 

noise source with single-side power spectral density  SV, then the RMS value of the noise is 

given by 

 
dfRMS V

f=0
V S

∞
= ∫

 (2.9) 

2.1.3 Noise PSD of Continuous-time Circuits 

The noise power spectral density of the output of the 1st order RC low pass filter 

(Figure 13) can be approximated by the rectangular region shown in line in Figure 14. The 

effective noise bandwidth is: [1] 

 
31

4 4
dB

efff
RC

ω
= =

 (2.10) 

  

Figure 13. First order low pass filter 

2.1.4 PSD of Sampled Noise 

We will now allow the switch to operate that in the sampling period Tc, where it is 

closed for αTc, and opened for (1-α)Tc. Here α  is the duty cycle as shown in Figure 16.  
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Figure 14. Noise power spectral density 

 

Figure 15. First order switched-capacitor low pass filter 

The continuous-time output of an ideal track and hold sampler is shown in Figure 17 

where the sample is taken on the falling edges of the clock. In many applications, only the 

sampled output near the end of the hold interval is of interest. The sampled values near the 

end of the hold period are shown in Figure 18. In this situation, the sampled waveform can be 

thought of as a discrete-time rather than a continuous-time waveform and it can be 

represented as a sequence VOUT(kT) where T is the period of the sampling clock. The 

reference to the clock period, T, can be suppressed and the sampled output can simply be 

though of as a sequence of real numbers as suggested by the sequence in Figure 18. 
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Figure 16. Timing diagram for sampler circuit 

  

Figure 17. Continuous-time track and hold operation 

 

 

VOUT(t)

CLK

VOUT(kT)

 

Figure 18. Discrete-time sampled sequence 
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Figure 19. Sampled and hold noise 

The noise on the sampled output looks like the waveform in Figure 19, where VC is 

the total noise. Vt is the noise in track phase. Vh is the noise in hold phase. Conceptually, it is 

constructed by sampling Vt at the end of track phase and then holding that value to the end of 
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the hold phase. The sequence Vs is constructed from sampling Vh at the end of hold phase. 

The relationship between VC, Vt and Vh is given by the equation c t hV V V= + . 

The single-sided PSD of Vt is given by  

 ( )
( )2
4

1 2
t

kTRS f
RCf

α
π

=
+

 (2.11) 

and the corresponding RMS value of Vt is given by 

 2
t

kTv
C

α
=  (2.12) 

2.1.4.1 PSD of sampled noise Vs 

If the noise is highly undersampled at the output of a low pass filter, i.e. the sampling 

frequency is much smaller than the noise bandwidth, aliasing from high frequencies to low 

frequency will occur. This is shown in Figure 20. The frequency response must be shifted by 

integer multiples of 1
c

c

f
T

=  where fc is the sampling frequency. So the spectral density in the 

base-band, that is for –fc/2 ≤ f ≤ fc/2, becomes: 

 ( ) ( )
k

s RC c
k

S f S f kf
=∞

=−∞

= −∑  (2.13) 

where SRC is the two-sided PSD of the continuous-time noise.  

There are approximately N aliased two-sided spectrums in the bandwidth from 0 to 

2
cf  where  

 12
2

eff

c c

f
N

f RCf
= =  (2.14) 

Thus, since the power spectral density SRC is approximately constant, the spectrum SS(f) is 

also constant and proportional to the effective bandwidth of the noise.  
If eff cf f>> (e.g. 5eff cf f> ), then the PSD of sampled noise is [2]: 

 ( ) 0

0
RC eff eff

RC

S f f f
S f

elsewhere

− ≤ ≤⎧
= ⎨
⎩

 (2.15) 

here SRC0 is the two-sided PSD of the continuous noise at zero frequency.  
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Up to this point, emphasis has been placed upon characterizing the continuous-time 

noise in the SC network which is comprised of a track phase noise, vt and a hold phase noise, 

vh. The sampled hold phase noise, vs in Figure 19 is actually discrete-time sequence. This can 

be viewed as a continuous-time noise source as well, VSAM(t), by passing vs to a zero-order 

sample and hold. VSAM(t) can be thought of as a modified version of vh(t) where the hold 

period is stretched to TCLK or, equivalently, where α in Figure 16 is set equal to 1. The 

spectrum of VSAM(t) can be obtained from that of vn(t) by dividing by α. The two-side 

thermal noise is characterized by SRC0=2kTR. Hence the two-sided sample noise spectrum 

becomes:  

 ( )
/ 2 1

/ 2

22 2
2

i N

SAM
i N c c

kTR kTS f kTR kTRN
RCf Cf

= −

=−

= = = =∑  (2.16) 

The total RMS noise can be obtained by integrating SSAM(f) over the base-band [-fc/2, 

fc/2]. Thus, the integrated sampled noise becomes: 

 ( )
/2

2

/2

c

c

f

s s
f

kTv S f df
C−

= =∫  (2.17) 

So the total noise power of VSAM(t) or variance in the base-band 
2 2

c cf ff− ≤ ≤  due to 

all replicas is simply kT/C. The aliasing due to the sampling of the noise thus concentrates 

the full noise power of the switch resistor into the base-band.  

The total noise power in the base-band is independent of R because although reducing 

R can reduce direct thermal noise PSD, it increases the noise bandwidth and thus the aliasing 

and the two effects cancel. 

2.1.4.2 PSD of noise Vh during hold phase  

If the sampled noise is held with the duty cycle (1-α)T, then the single-sided PSD 

becomes [3]: 

 ( ) ( ) ( ) ( )2 21 sinc 1
k

nsh RC c
kc

fS f S f kf
f
πα α

=∞

=−∞

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
∑  (2.18) 
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where SRC(f) is given by (2.15).  

Substituting equation (2.16) into equation (2.18), we get the single-sided PSD:  

 ( ) ( ) ( )2 21 sinc 1nsh
c c

kT fS f
f C f

πα α
⎛ ⎞

≅ − −⎜ ⎟
⎝ ⎠

 (2.19) 

More generally, we can get for all first order circuits: 

 ( ) ( ) ( )2 231 sinc 1dB
nsh

c c

w fS f kTR
f f

πα α
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

 (2.20) 

where ω3dB = 1/RC, equation (2.20) is the same as the equation (8) in [1]. 

It is a known fact that as 0, sin( ) , and sin ( ) 1x x x c x→ → → . Thus, at very low 

frequencies, i.e. cf f , equation (2.19) can be rewritten as: 

 ( ) ( )21nsh
c

kTS f
f C

α≅ −  (2.21) 

The RMS value of the noise in the hold phase can be written as: 

 ( )
0

n nshv S f df
∞

= ∫  (2.22) 

Hence from equation (2.11) and (2.19), the total noise power of the continuous 

sample and hold noise expressed in terms of the single-sided PSD is 

 ( )
( )

( ) ( )2 2
2

4 1 sinc 1
1 2

c
c c

kTR kT fS f
f C fRCf

α πα α
π

⎛ ⎞
= + − −⎜ ⎟

+ ⎝ ⎠
 (2.23) 

Integrating (2.23) from 0 to infinity, we can obtain  

 ( )
( )

2
2 1

2
2 1c

c c

kT kT kTv
C T Cf C

αα
α

−
= + =

−
 (2.24) 

Thus, the continuous-time RMS noise voltage at the output of the sampler is 

independent of the duty cycle of the S/H circuit, and has the same RMS value as VSAM(t). 
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Figure 20. Spectrum of sampled noise 

2.1.4.3 Simulation of sampled noise  

The derivations in the previous section where often based upon the assumption that 

the noise spectral in a first-order RC network can be approximated by the dc PSD in the 

noise bandwidth frequency band with no spectral contributions outside that frequency band. 

This results in a modest over-estimation of the PSD at the upper end of the noise band and a 
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modest under-estimation of the PSD outside of the noise band. In this PSD with the Cadence 

tool SpectreRF are considered and results are compared with those obtained from the 

theoretical analysis in the previous section. 

Consider the first-order SC sampler shown in Figure 21.  

  

Figure 21. Schematic of the simplest switched-capacitor circuit 

The circuit parameters considered in the simulation are listed in Table 1:  

Table 1. Simulation parameters 

Components value 

R 1kΩ 

C 10pF 

Tclk(Clock period) 2.5μs 

α(duty cycle) 0.5 

The switch is realized by VerilogA code and it is assumed ideal. A resistor was added in 

series with the switch to represent the on resistance. In the schematic, it uses a feature that is 

unique to Spectre-- general voltage source vsource.[15] It can generate ac, dc and so on by 
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changing the set up of that voltages source. Here in the schematic, only dc source with 

voltage 0 is used so that this is not voltage source in the schematic.  

From equation (2.11) and (2.21), at zero frequency, the total noise PSD is  

 

( ) ( ) ( )

( )

( )

2

0.5

0 0 0

4 2 1

2 1000 62,500

22.938nV/

c t h

c

S S S

kTkTR
f C

kT

Hz

α

α α
=

= +

= + −

= +

=

 (2.25) 

It closely matches the SpectreRF result in Figure 22 . 

Periodic Noise Analysis ‘pnoise’:freq=(0Hz->4Hz)

V
/s

qr
t(H

z)
(n

V
/s

qr
t(H

z)
)

freq(MHz)

 

Figure 22. Power spectral density of the total undersampled noise sqrt(Sc) 
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The PSD of the sampled noise spectrum will now be compared to simulated results. 

To facilitate this comparison, we will modify equation (2.16) from two-sided spectrum to 

one-sided spectrum. The single-sided sample noise spectrum becomes: 

 

( )

( )
( )

23

2

2 1.381 300
400 10

45 /

s
c

kTS f
f C

e
k p

nV Hz

−

=

=

=

 (2.26) 

The simulation result in Figure 23 is about 39nV/sqrt(Hz). The difference is caused 

by the limited max frequency SpectreRF can take into account and the small errors associated 

with assuming the spectral density remains constant throughout the noise bandwidth. If I 

increase the maxacfreq parameter, the result will be more accurate and but the simulation 

time will be increased.  

Periodic Noise Analysis ‘pnoise’:freq=(0Hz->4Hz)

V
/s

qr
t(H

z)
(n

V
/s

qr
t(H

z)
)

freq(MHz)
 

Figure 23. Power spectral density of sampled noise sqrt(Ss) 
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2.1.5 Conclusion 

It has been shown from the foregoing derivations that for a simple switched-capacitor 

circuit as shown in Figure 21, the simulation result matches the derivation in section 2.1.4.2 

and the integrated noise spectrum from 0 to inf will give approximately the same noise 

variance as was obtained from the computer simulation.  
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CHAPTER 3 NOISE CALCULATION FOR TWO WIDELY 
USED SC CIRCUITS 

In Chapter 2, we reviewed the theorem that states that if the samples from each clock 

period are not correlated, than the variance of the continuous-time signal will be the same as 

the variance of the sampled discrete signal. In Chapter 2, both power spectral density (PSD) 

analysis and kT/C analysis for noise variance are discussed for low pass 1st order SC circuits.  

In mixed signal application, several SC circuits are widely used. The PSD of the noise of 

these circuits will be different for these circuit from that of the 1st order low pass filter. In the 

following chapters, a PSD analysis for the noise during the track phase and the continuous 

noise during the hold phase will be discussed for two widely used SC amplifier circuits, the 

flip-around amplifier and the charge-redistribution amplifier. First in this chapter, the PSD 

analysis will be derived for the noise during the track phase for both the flip-around structure 

and the charge-redistribution structure. Noise power calculated from PSD analysis will be 

compared to that from a conventional kT/C analysis. Equation Chapter (Next) Section 1 

3.1 Flip-around Structure 

3.1.1 Derivation of the PSD of Noise by Method I 

For the flip-around SC gain stage, we assume the non-dominant pole is far away from 

the dominant pole. With this assumption, we can look at the flip-around gain stage as a 

single-pole system. So the first-order derivation from the foregoing section still provides a 

good approximation to the spectral performance of the flip-around SC gain stage[22]-[25] 

and will be used in the following analysis. 
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Figure 24. Flip-around switched-capacitor amplifier 

 

 

1
φ

2
φ

 

Figure 25. Clock signal 

The non-overlapping clock signal is shown in Figure 25. When Φ1 is high, the circuit 

is operating in the track mode and when Φ2 is high, the circuit is operating in the hold mode 

phase. 

During the phase Φ1, the equivalent circuit is: 
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Figure 26. Circuits during the track phase 

Vn1 Vn2 and Vn3 are the noise source caused by the resistance of switch S1, S2 and S3. 

R1, R2 and R3 are the resistance of switches S1, S2 and S3.  

The transfer function of the operational amplifier is assumed to be:  

 
( )opamp

GBH s
s

=
 (3.1) 

The noise PSD of the output voltage during the phase Φ1 will be determined by the 

noise generated by the resistances R1, R2, R3 from switches S1, S2, and S3. However, the 

output we are looking at is the output during the hold phase. So we don’t care about the 

output noise during phase Φ1, but we care about the noise at output during the hold phase Φ2. 

During Φ2, the switch S3 is open so R3 will not contribute to the output noise voltage. The 

noise that is present on the output during phase Φ2 will be comprised of that sampled onto C1 

and C2 during phase Φ1 along with the continuous-time noise contributed by switches S4 and 

S5. Since the gain of the operational amplifier is large, S3 will contribute little to the sampled 

noise on C1 and C2 during phase Φ1.  

This analysis will be restricted to the sampled noise on C1 and C2 that is the 

continuous-time noise contributed by S4 and S5 will be neglected.  

The transfer function from Vn1 or simply V1 to the voltage across C1 is:  

( ) ( ) ( )
( ) ( ) ( )( )( )

2
3 2 2 2 2 21

1
1 1 2 2 3 2 1 1 3 1 1 2 2

1
1 1 1 1

c s R C R C s R C GB GBVH s
V sC sR C sR sC sR C sR s GB sR C sR C

+ + + +
= =

+ + + + + + +  (3.2) 
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The square of magnitude of the transfer function is:  

( )
( )( ) ( )( )

( ) ( ) ( )

2 22 2
3 2 2 2 2 22

1 2 22 3
1 3 3 2 1 1 2 2 2 2 1 1 1 1 2 2 1 2 2 3 1 1 2 2

1

1 2

GB R C R C R C GB
H j

GB C R R C RC R C GB R C RC RC GB R C GB C R C R RC R C

ω ω
ω

ω ω ω

− + + +
=
⎡ ⎤ ⎡ ⎤− + + + + + + + − +⎣ ⎦ ⎣ ⎦

  (3.3) 

From (3.3), we can numerically calculate ( ) 2
1

1
2

H jω = , to obtain 3dB frequency, 

ω3dB, and substitute this into equation (2.20), we can get noise PSD at C1.  

From VC1 to Vout, we have 

 ( ) 11

2

CH z z
C

−=  (3.4) 

 ( ) 1
1

2

cj T
c o c

CH j T e
C

ωω −
→ =  (3.5) 

Since the noise PSD in phase Φ1 at C1 is  

 ( ) ( ) ( )2 23 1
_ 1 1

1 2
1 sinc

2
dB

h c
c c

f
S f kTR

f f
α πωα

−⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (3.6) 

The hold phase noise PSD at the output will be:  

 ( ) ( ) 2
1 _ 1 1no n c c oS f S H jω→=  (3.7) 

Thus, Sno1(f) can be expressed as  

 ( ) ( ) ( ) 2
2 23 1 1

1 1
2

1 2
1 sinc

2
dB

no
c c

f CS f kTR
f f C

α πωα
−⎛ ⎞⎛ ⎞

= − ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (3.8) 

By a similar method we can get noise at output from switch 2.  
 ( )2

cj T
c o cH j T e ωω −
→ =  (3.9) 

Thus, Sno2(f) can be expressed as  

 ( ) ( ) ( )2 23 2
2 2

1 2
1 sinc

2
dB

no
c c

f
S f kTR

f f
α πωα

−⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (3.10) 

At very low frequencies: 

 ( ) ( ) ( ) ( )
2

2 1
1 2 3 2 2 3 1 1

2

0 0 0 1no no no dB dB
c

CkTS S S R R
f C

α ω ω
⎛ ⎞⎛ ⎞
⎜ ⎟= + = − + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (3.11) 
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The sampled RMS noise voltage at output during phase Φ2 is equal to: 

 ( ) ( )_ 1 20
/ 1o rms no noV S S df α

∞
= + −∫  (3.12) 

If we sample the output of the SC gain stage, then the noise PSD of the output 

sequence becomes: 

 
2

1
3 1 2 3 2 1

2
SAM dB dB

c

CkTS R R
f C

ω ω
⎛ ⎞⎛ ⎞
⎜ ⎟= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (3.13) 

3.1.2 Simulation Result 

The schematic used for simulation is shown in Figure 27. The switches and the Op 

Amp are realized with VerilogA code. Resistors in series with the switches are used to model 

the turn-on resistance of the switches.  

Parameters used in the circuit are shown in Table 2: 

 

 

Figure 27. Flip-around simulation schematic 
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Table 2. Simulation parameters 

Components value 

R1,R2, 10kΩ 

R3, R4,R5 0 

C1,C2 1pF 

GB (of Op Amp) 1MHz 

fc 10KHz 

α 0.5 

Hence it follows that  

β= C2/( C1+C2)=0.5 

θ=R2C2βGB=1 

Simulation results for the noise PSD at the output are shown in Figure 28. From the 

simulation results, it can be observed that S(0)≈125nV/sqrt(Hz).  

  

Figure 28. Noise spectrum during hold phase 
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From (3.2) and the corresponding expression for H2(s), w3dB1 and w3dB2 were 

numerically determined and were identical and given by ω3dB=7.7596×106rad/sec 

From equation (3.11), the noise during hold phase at low frequency is equal to  

 ( ) ( )
6

2 4 4
4

7.7596 100 0.5 10 10
10

126.77 /

oS kT

nV Hz

×
= +

=

 (3.14) 

This closely matches the simulation result in Figure 28. According to equation (3.13), the 

sample noise at the output has noise PSD given by: 

 358.55 /sS nV Hz=  (3.15) 

The corresponding simulation results are shown in Figure 29. This analytical result is a little 

larger than the simulated result shown in Figure 29 which is about 320nV/ / Hz . This 

difference is due, in part, to the first-order model used to characterize the performance of a 

3rd-order system. Although there is a modest difference between the simulation results and 

the calculation, the simulation results are still in reasonable agreement with the hand 

calculation.  

From equation (3.12), we can get the noise variance at the output, _  45.255o rmsv Vμ= . 

Refer it back to the input of the circuit, the input referred noise variance will be 

_ 22.63in rmsv Vμ= .  

From another point of view, during phase Φ1, the noise from switches is sampled onto 

the capacitors. During the hold phase Φ2, the noise sampled on the capacitors is viewed as 

DC voltage source and be amplified by the Op Amp to the output.  

By kT/C analysis, we can get noise variance at output at the end of the hold phase Φ2 

and then referred it back to the input.  

 _
1 2

o rms
kT kTv

C C
β

= +  (3.16) 

Referred the noise at output back to the input, _ 37.38in rmsv Vμ= . The input referred 

noise calculated from kT/C analysis is different from PSD analysis since the circuit is not a 
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true one pole system. And the rectangular approximation is not accurate any more. But the 

result from kT/C analysis has the same order of magnitude to that from PSD analysis.  

 

Figure 29. Sampled noise spectrum at the end of hold phase 

3.1.3 Comparison  

For the simplest SC circuit (Figure 15), although the expression for the PSD analysis 

are the same as the that of the kT/C analysis (see equation (2.24)), The expression of PSD 

analysis and kT/C analysis are substantially different for the flip-around SC gain stage. It is 

not clear how these two expressions compare. Hence, numerical comparison will be used for 

flip-around circuit. 

It is shown numerically that the RMS values of the input referred noise calculated 

from a PSD analysis and the kT/C equations are of the same order of magnitude for both the 

flip-around switched-capacitor gain stage. 
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3.1.4 Derivation of the PSD of Noise by Method II 

Second method is to calculate the real effective noise bandwidth feff and substituting it 

into equation (2.19). 

In the second method, we have to first calculate the effective noise bandwidth feff so 

that the total power of the effective one is the same as the original one. That is:  

 ( ) ( ) 2
1 1 12 2nS f kTR H j fπ=

 (3.17) 

 
( ) ( ) 2

1 1 1 1 12 2 2n effS f df kTR H j f df kTR fπ
∞ ∞

−∞ −∞
= =∫ ∫  (3.18) 

From equation (3.18) we can get 1efff . Then substituting into equation(2.19), we can 

get sampled noise PSD at C1 ( )_ 1n cS f . By the same way, we can get ( )_ 2n cS f  and get 

_o rmsV  by (3.7) and(3.12).  

If the two poles of the gain stage are really close to each other. Then this method will 

be more accurate.  

3.2 Charge-redistribution Structure 

Another popular amplifier used in pipelined ADC stages is shown in the following 

Figure 30. As the flip-around structure and it also uses non-overlapping clocks. An advanced 

phase, Φ1A is also added to provide for the bottom-plate sampling. 

3.2.1 Derivation of the PSD of Noise 

A PSD analysis for this charge-redistribution SC gain stage is similar to that used for 

the flip-around SC gain stage. So we will just list the key equations for this charge-

redistribution structure.  
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Figure 30. Basic switched-capacitor flip-around gain stage 

During track phase Φ1, the equivalent noise circuit is as shown in Figure 32: 

 

1R 1nv
1C

2R

2nv

1CV

  

Figure 31. Equivalent circuit in track phase 

 

( )

( ) ( )

1
1 1 2

1 2
1

1 2
1 2 1

1

1

1
1

c n n

n n

SCV V V
R R

SC

V V
R R SC

= +
+ +

= +
+ +  (3.19) 

Hence the 3dB noise frequency of this first-order circuit is 1/((R1+R2)C1). 

During hold phase Φ2, the equivalent circuit is as shown in Figure 32: 
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Figure 32. Equivalent circuit in hold phase Φ2 

The transfer function from VC1 to the output, is: 

 ( ) 1

2

cj T
c

CH j T e
C

ωω −−
=  (3.20) 

Hence the single-sided output noise PSD during the hold phase Φ2 is: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

22 23
1 2

22 2

1

1 2
1 sinc

2

1 2
1 sin

2

dB
nh

c c

c

f
S f kT R R H j

f f

fkT c H j
C f

α πωα ω

α π
α ω

− ⋅⎛ ⎞
= − + ⎜ ⎟

⎝ ⎠
− ⋅⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

 (3.21) 

At very low frequency, the PSD becomes: 

 ( ) ( )
2

2 1

1 2

0 1nh
c

CkTS
C f C

α
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

 (3.22) 

If we sample the output at the end of hold period, we can get:  

 ( )
2

1

1 2
SAM

c

CkTS f
C f C

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (3.23) 

As for charge-redistribution SC gain stage, during track phase Φ1, the Op Amp is 

disconnected from the input. So the components connected to the input form just a RC circuit 

and the spectrum is the same as the 1st order low pass filter. So the analysis and simulation 

results for 1st order low pass filter shown in Chapter 2 are also valid for charge distribution 

structure.  
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Hence, during the track phase Φ1, the noise from switches is sampled onto the 

capacitors. During the hold phase Φ2, the noise sampled on the capacitors can be viewed as 

DC voltage source and be amplified by the Op Amp to the output.  

By using kT/C analysis, we can get noise variance at output at the end of the hold 

phase and then referred it back to the input.  

3.3 Comparison between PSD Analysis and kT/C Analysis 

Numerical comparison between results from kT/C analysis and PSD analysis for both 

circuits is shown in Figure 33 and Figure 34. The result shows the RMS value from PSD 

analysis depends only on the product θ=RCβGB and feedback factor β. 

If 1θ , then 1/RC is the dominant pole. Vice versa, 1θ , GB of Op Amp is the 

dominant pole of the system.  θ will be discussed in detail in the following chapter. 
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Figure 33. S/H noise of flip-around structure 
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Figure 34. S/H noise of basic structure 

In Figure 33, when θ>1, the result from kT/C analysis is 20% larger than PSD 

analysis because the approximation for 3dB bandwidth is used in PSD analysis. But it is still 

reasonably close to PSD analysis. Hence, the analysis for S/H noise in a switched-capacitor 

circuit will not deviate a lot from the real value by using kT/C analysis without considering 

sampling effect and aliasing. However, in Figure 33, when θ=0.1, curve from the kT/C 

analysis does not match curve from the PSD analysis. That is because when θ is so small, the 

bandwidth of the system is determined by the gain bandwidth product of the Op Amp, so the 

bandwidth of thermal noise is much less than 1/RC and the total noise variance is reduce by 

the bandwidth limitation. In the Figure 34, as the GB of Op Amp will not affect the 

bandwidth of the S/H noise in the sampling phase, so the noise variance is independent of the 

figure of merit θ.  

Although the PSD analysis shows the total S/H noise variance will be smaller than 

variance gotten from kT/C analysis in some cases, we will still use kT/C analysis in next 

chapter for simplicity. But we will keep it in mind that the variance will be smaller than that 

calculated from kT/C analysis if the GB of Op Amp dominated the bandwidth of the circuit.  
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3.4 Conclusion 

In this chapter, we have derived the PSD for both flip-around SC circuits and Charge-

redistribution circuits. Cadence SpectreRF is used to evaluate the PSD hand analysis. It has 

been shown that the simulation results match the analysis reasonable well. Matlab simulation 

results show that if the thermal noise is undersampled, it can used DC voltage to represent 

S/H circuits with reasonable accuracy. So in the next chapter, for simplicity, we will directly 

use the DC voltage source to replace the S/H noise source and start to talk about the 

continuous noise of the circuits.  
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CHAPTER 4 CONTINUOUS-TIME NOISE ANALYSIS 
For switched-capacitor circuits, thermal noise from the track phase or the S/H noise is 

widely characterized by a standard “kT/C” noise analysis. Noise from the hold phase has not 

been discussed; however, the noise contribution from hold phase can be very important, and 

depends on the GB of the amplifier, feedback factor and so on. As the noise generated during 

the hold phase will not be sampled on the sample clock and appears as a continuous-time 

signal, it will be called continuous-time noise in this thesis. If a switched-capacitor stage is 

followed by another SC circuit, the continuous-time noise itself will be sampled; is sampled 

noise will be further discussed. In this chapter, the continuous-time (CT) noise present during 

hold phase will be discussed and compared to the S/H noise. The contribution of the CT 

noise will be discussed for both the flip-around and charge-redistribution SC circuits.  

 

4.1 Introduction 

In the previous chapter, the power spectral density of noise generated during the track 

phase was analyzed for both the flip-around structure and the charge-redistribution structure. 

Integrating the PSD from w=0 to infinity, we showed that the total noise power is of the same 

of magnitude as that calculated from standard kT/C analysis. So in this chapter, for simplicity 

we will use kT/C analysis to analyze the noise from track phase. Then the continuous-time 

noise will be calculated and compared to the noise present from the sampling phase. The two 

most widely used SC amplifier circuits will be used in this chapter. 

Equation Chapter (Next) Section 1 

4.2 Figure of Merit θ 

Some discussion about the characteristics of the noise voltage at the output of the S/H 

circuit is in order. For proper operation of this circuit, it is necessary that the settling time of 
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the RSWC circuits be small compared to the clock period TCLK and it is necessary that the GB 

of the op amp must be much larger than fCLK. These requirements can be expressed as 

 TCLK>>RSWC (4.1) 

 TCLK>>1/GB (4.2) 

These requirements do not place restrictions on the relationship between the GB of 

the op amp and the settling time of the passive part of the circuit, RSWC. In the following 

paragraphs, we will quantitively discuss the relationship between amplifier BW and the size 

of the switches.  

4.2.1 Amplifier Gain and BW Requirements 

The operational amplifier must be fast enough to provide adequate settling in the 

clock period of the amplifier and, if calibration is not needed, must have enough dc gain to 

guarantee the settled value of the feedback amplifier output is close enough to the desired 

value.  The linearity of the amplifier also affects performance and the gain should be kept 

sufficiently high throughout the output signal swing range. 

The op amp can generally be modeled with the first-order gain expression 

 ( ) 0A p GBA s
s p s

= ≅
+

 (4.3) 

The dc gain is given by A0 and the high frequency response and, in particular the 

settling time of the feedback amplifier, is characterized by the gain-bandwidth product GB. 

Beyond meeting phase margin requirements, there is little concern about the pole location p.  

When feedback is applied, the β of the feedback network is often modestly different 

than the reciprocal of the dc gain and this must be taken into account when doing 

compensation and when analyzing the performance of the finite gain stages. 

The gain of a feedback network can be expressed as 

 1FB
AA

A
η
β

=
+  (4.4) 
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where the desired feedback gain is η/β. The minimum dc gain is often specified so that the 

settled error is less than ½ LSB relative to the effective number of bits of resolution that must 

be retained at the output of the amplifier stage. Mathematically this requirement can be 

expressed as. 

 1

1(1 )
1 2 STn

A
A
η η
β β+= −

+
 (4.5) 

where nST is the effective resolution expressed as the number of equivalent binary bits. 

This can be solved for the minimum acceptable gain A which can be expressed as  
 ( )6 6 20logdB STA n β≅ + −  (4.6) 

The GB is generally selected to guarantee an acceptable settling time. The 

requirement that is usually established is that the worst-case settling must be to within ½ LSB 

in an interval of length TX where TX is the time available for the amplifier to settle.  If 

slewing is neglected, worst-case settling will occur when the step is the largest.  This is 

depicted in the following Figure 35 where it is assumed that the largest step at the output is 

VREF.  

  

Figure 35. Settling of SC amplifier 

In this figure ε characterizes the minimum acceptable settling error and is given by 

 1

1
2 STnε +=  (4.7) 
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Since the amplifier is a first-order feedback network, the response can be expressed in 

the form  

 ( ) ( ) -- sGBtr t F I F e β= +  (4.8) 

where F is the final value and I is the initial value of the output waveform.  

It thus follows that 
 ( ) ( )X-βGBT

REF REFV 1- =V 1-eε  (4.9) 

This can be solved for GB in terms of TX to obtain 

 
( )

X

ln
GB

βT
ε

= −  (4.10) 

Often the time interval for settling, TX, is half of the clock period 

 1
2 2

CLK
X

CLK

TT
f

≅ =  (4.11) 

So, substituting for ε and TX, we obtain  

 ( ) ( )1 2ln 2 1.4 1ST ST
CLK CLK

n n
GB f f

β β
+ +

= ≅  (4.12) 

where the GB is in rad/sec. 

4.2.2 Sizing of the Switches 

The issue of how the switches should be sized does deserve attention. If the switch is 

sized to have a very small ON impedance, the area will be large (resistor value inversely 

proportional to the W/L ratio of the switch), the switch will be slow down, and the dynamic 

power needed to drive the switch will be high. If the switch ON impedance is too large, 

settling will not occur during the sampling interval. Once the switch sizing strategy is 

determined, the relationship between RSWC and GB can be determined and this will provide 

guidance on the switch noise during the “continuous-time” mode of operation of a sampling 

circuit. 
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Considering again the switch-capacitor sampler of Figure 15, there are two different 

conditions that may govern the settling requirements. One is in the track mode when the 

input signal is continuously varying and the other is in the sample mode where the input 

signal itself has already been sampled and is relatively constant during most of the sampling 

operation. These two cases will be considered separately. 

If the input remains constant throughout the sampling operation the response can be 

represented by the step response of a first-order network as  

 ( ) ( )
-

- SW

t
R Cr t F I F e= +  (4.13) 

Assuming Nyquist-rate inputs, worst case settling will occur when the step is 

maximum which corresponds to I=0 and F=VREF. If ε characterizes the worst-case acceptable 

setting, this must occur at time TCLK/2.  In this case, the settling waveform must satisfy the 

equation  

 ( )
-
21- 1-

CLK

SW

T
R C

REF REFV V eε
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.14) 

this can be solved for RSW to obtain 

 
( )SW

CLK

1R
2Cf ln ε

= −  (4.15) 

If we assume the settling must be to ½ LSB at the nST level (this may not be quite 

good enough), then  

 1

1
2 STnε +=  (4.16) 

Substituting this into the expression for RSW, we obtain 

 
( )( )
1

2ln 2 1SW
CLK ST

R
Cf n

=
+

  (4.17) 

which can be expressed as 

 
( )( )

1
1.386 1SW

CLK ST

R
Cf n

=
+

 (4.18) 
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This must be met for every switch-capacitor combination. 

4.2.3 Second Order System 

If an Op Amp with a first-order gain character is embedded in a 1st-order passive 

network, the resultant circuit becomes second-order. For the second order system shown in 

Figure 36, if 1 2R R R= = , the transfer function can be written as  

 ( ) ( )( )

2
1 2

1

1 2

R p p
R

H s
s p s p

⎛ ⎞
−⎜ ⎟
⎝ ⎠=
+ +

 (4.19) 

where 1p GB≈  and 2
1p

RC
≈ .  

The metric θ  will be defined that relates the two poles in the amplifier by the 

expression.  

 1

2

pRC GB
p

θ β= =  (4.20) 

If 1θ  and 1 2p p , then 1/RC is the dominant pole. Vice versa, if 1θ  and 

1 2p p , the GB of the Op Amp is the dominant pole of the system.  

  

Figure 36. Lossy integrator  
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4.3 Flip-around Structure 

Consider again the flip-around SC voltage amplifier repeated in Figure 37. We will 

now consider the continuous-time noise at the output that is present during phase Φ2. 

During phase Φ2 the circuit can be represented as shown in Figure 39 where n1SV  and 

n2S V  represent the samples of the switch noise that were taken at the end of phase Φ1. The 

sampled input voltage and the sampled noise voltages obtained during phase Φ1 are explicitly 

shown in this figure. It must be emphasized that some of the independent variables are dc 

voltage sources and others are time-varying noise sources that we are sampled at the end of 

phase Φ1. The variable d is a Boolean variable that assumes an integer numerical value of 0 

or 1. When d=0, VREF would be replaced by a short to ground. If it is assumed that the gain 

of the amplifier is A(s)=GB/s, it follows from a routine but tedious analysis that the output in 

the frequency domain during phase Φ2 domain can be expressed as 

  

Figure 37. Flip-around SC circuit 
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Figure 38. Clock signal 

  

Figure 39. Switch noise sources in hold phase 
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where the ^ on a variable indicates a sampled noise value. Assuming the clock frequency is 

slow enough that the amplifier settles, the output due to all of the dc components will settle to 

their steady-state value. The continuous-time noise sources, Vn4 and Vn5, are the only terms 

that will provide a time-varying output after the amplifier has settled. Under these settling 

assumptions, the expression for VOUT simplifies to 

 ( ) ( )

( )

1 1 1
n1 n2OUT IN REF

2 2 2

24 55 2 4 1
1

22 2
4 2 5 4 2

1 1

C C CV =V 1 V V V
C C C

C1+R C s 1+R C sC
1 1C C+s R C + 1+ +s R + R CC CGB GB

n n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞− ⎜ ⎟
⎝ ⎠+

⎡ ⎤⎛ ⎞⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

1d

V V  (4.22) 

This can be written functionally in the form 

 ( ) ( )1 1 1
1 2 4 51 4 5

2 2 2

1 -n n n nOUT IN REF
C C CV V d V V V V f s V f s
C C C

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + − + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (4.23) 

where the functions f4(s) and f5(s) are second-order polynomials in s given by 
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 (4.24) 

Since the noise sources are uncorrelated, the output voltage is given by 

 21 2
- 4-52

2
OUT RMS RMS

C CV kT V
C

⎛ ⎞+
= +⎜ ⎟

⎝ ⎠
 (4.25) 
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where β is the feedback factor, β=C2/(C1+C2) and where γ is the ratio between R5 and R4, that 

is, γ=R5/R4. 

The notation of the output RMS output voltage needs some interpretation since it is 

showing both continuous-time quantities expressed in RMS and values that are not time 

varying during phase Φ2. Specifically, the first term on the RHS of the expression (4.25) is 

due to the sampled voltage obtained during phase Φ 1 and is not time varying. The second 

term, V4-5RMS, is a time-varying term expressed in RMS. If the output is sampled, the 

sampled value will have the RMS value obtained from this equation by taking the sum of the 

squares of the two terms. To emphasize the mixed notation in this equation, the ~ was 

included on the symbol.  

Thus from (4.25) the input referred noise voltage during phase Φ2 is  

 
2

22 1 2
- 4-52

1 2
IN RMS RMS

C C CV kT V
C Cφ

⎛ ⎞⎛ ⎞+⎜ ⎟= +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (4.27) 

But, the input-referred noise voltage during phase Φ2 is of little interest. What we are 

really interested in is the input referred noise voltage during phase Φ1. Since the gain from the 

input to the output is (C1+C2)/C2, we must divide the RMS output noise voltage by this gain 

to find the input-referred noise voltage. 

When the output is sampled, the equivalent input referred noise voltage is the sample 

with RMS value. 

 
( )

22 1 2
4 52

1 2 2

IN RMS RMS
C C CV kT V

C C C
⎛ ⎞+

= +⎜ ⎟+ ⎝ ⎠
- -

ˆ  (4.28) 

It can be observed from the second-order term in the denominator of (4.24) that the 

magnitude of the gain will drop off at high frequencies thus limiting the noise power at the 

output. However, if the capacitors are in the pF range and the switch impedances are in the 

KΩ range, then the RSWC products are in the nsec range and could be comparable to or larger 

than the GB terms in f4(s) and f5(s) and the RMS noise voltage at the output of the op amp 
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can be quite large. Many authors simply ignore the noise contributed by R4 and R5 and this is 

justifiable provided the switch impedances are sufficiently small and, in this case, (4.28) 

reduces to 
1 2

IN RMS
kTV

C C
=

+
- . 

If we assume R4C1=R5C2 and substitute equation (4.20) into equation (4.26), equation 

(4.26) can be written as  

 ( )( )2

4-5 4
1

4
1-

0
RMS

kTV f s df
C GB

f

θ
β β

∞
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

⌠
⌡
=

 (4.29) 

where the figure of merit 4 1R C GB=θ β  defines the relationship between RC and βGB 

(explained in section 4.2.3) . 

Substituting for the RC products of (4.20) into (4.24), we obtain the equivalent 

expressions:  

 
( )

( ) ( )

4
2

2

5 4

11+s
1-β βGBf s =
β 1+1+s +s

βGB βGB
βf s = f s

1-β

θ θ⎡ ⎤
⎢ ⎥
⎣ ⎦

 (4.30) 

Substituting the value for f4(s) into (4.29), replacing s with j2πf, and doing a variable 

substitution, it follows that  

 ( )
( )

2 2

4-5RMS 2 22 2 4 2
1

2 1- 1+ f df
β f + 1 -2 β f +1

f=0

kT
C
θ β θ
β π θ θ θ

∞

=
⎡ ⎤+⎣ ⎦

⌠
⎮⎮
⌡

V  (4.31) 

Although not apparent from the expressions, it has been observed by simulations that 

with β=½, the definite integrals will be identical with different θ  but they differ when β 

differs from ½. With this observation, for β=½, we can obtain  

 4-5 2
1

4 1 2
1

0
RMS

kT kTV df
C f C

f

θ θ
π

∞

= =
+

⌠
⎮
⌡
=

 (4.32) 
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 -
ˆ
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kT kT kTV
C C C

θ

θ

⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟ ⎡ ⎤⎝ ⎠ ⎝ ⎠
⎢ ⎥+⎣ ⎦

 (4.33) 

where β=½,  C=C1=C2.  If θ=1, then equation (4.33) becomes 

 

4-5 2

4 1 2
1

0
RMS
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f
π

∞

= =
+

⌠
⎮
⌡
=  (4.34) 

When referred back to the input, this becomes 

 
-

ˆ
2 2IN RMS
kT kT kTV
C C C

⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  (4.35) 

The first term under the radical is due to the noise during phase Φ1 and the second 

term is due to the noise during phase Φ2. In this case, the second phase contributes just as 

much noise as the first  phase which is not an attractive property since it significantly 

increases the size of the input capacitors needed to meet a given noise requirement. 

Table 3. Noise contributions of switches during Ф2 

β   
1/2 1/4 1/8 

V
4-5RMS

 1.414 2.24  3.31  
V

IN-RMS
 1  1.03  1.02  θ=1 

C
INEQ

  C
1
  0.94C

1
 0.95C1 

V
4-5RMS

 1  1.79  2.83  
V
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 0.87  0.97  1  θ=1/2 

C
INEQ

  (4/3)C
1
 1.05C

1
 C1  

V
4-5RMS

 0.707 1.414 2.41  
V
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 0.79  0.94  0.98  θ=1/4 

C
INEQ

  (8/5)C
1
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1
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V
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 0  0  0  
V
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 0.707 0.87  0.94  θ=0 

C
INEQ

  2C
1
  1.33C

1
 1.14C1 
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Table 3 summarizes the contributions to the sampled input refined noise as a function 

of both β and θ. They are expressed as the factor that must multiply the term /kT C . Also 

shown in the table is the effective sampling capacitance.  

From Table 3, it can be observed that the sizing of the switches does play a key role 

in the overall noise and that just making the switches small enough to meet settling 

performance requirements does still result in a rather substantial excess noise introduced by 

the Φ2 switches. Making the switches large and correspondingly, the switch impedance small 

to reduce their contribution, however, may not be particularly attractive either. 

From this table, it should be apparent that the switches can add significant noise 

during the charge transfer stage (i.e. second phase) that will be sampled by the following 

stage. This noise increases the size needed for the sampling capacitor. Of course, if θ is small 

enough this noise will become negligible.  

Keeping everything the same but reducing the size of the switches will increase θ as 

the resistance of the switches is increased. However, as stated said in previous chapters, for 

some applications, the physical size of the switches has to be kept small to provide high 

speed or low dynamic power dissipation. For some applications, even minimum-sized 

transistors will provide a small enough value of θ to effectively eliminate the extra noise 

introduced during phase Φ2 whereas other applications may require very large switches even 

if θ=1. 

We will now determine the critical switch impedance as a function of the clock speed 

and the resolution of a data converter. It will be assumed that the time allocated to settling 

time is half of the clock period, that slewing can be neglected, that the RMS noise voltage 

can be at most ½ LSB with a VREF of 1V, and that all of the sampling noise is determined by 

the capacitor C1. With these assumptions, from the expressions for R4, GB and the kT/C 

noise, repeated below, we obtain the expression for R4. 

For θ =1, we can calculate 
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substituting into R4, we will obtain 

 
( )2 2

1
4 2 1 2 2STn

ST CLK

R
kT n f+

=
+ ln

  (4.37) 

Table 4. Critical Switch Resistances for Continuous-Time Noise Accumulation 

  Frequency 

  100 1K 10K 100K 1M 10M 100M 

8 2.95E+11 2.95E+10 2.95E+09 2.95E+08 2.95E+07 2.95E+06 2.95E+05 

9 6.64E+10 6.64E+09 6.64E+08 6.64E+07 6.64E+06 6.64E+05 66435 

10 1.51E+10 1.51E+09 1.51E+08 1.51E+07 1.51E+06 1.51E+05 15099 

11 3.46E+09 3.46E+08 3.46E+07 3.46E+06 3.46E+05 34602 3460.2 

12 7.99E+08 7.99E+07 7.99E+06 7.99E+05 79850 7985 798.5 

13 1.85E+08 1.85E+07 1.85E+06 1.85E+05 18537 1853.7 185.37 

14 4.33E+07 4.33E+06 4.33E+05 43252 4325.2 432.52 43.252 

15 1.01E+07 1.01E+06 1.01E+05 10137 1013.7 101.37 10.137 

16 2.39E+06 2.39E+05 23852 2385.2 238.52 23.852 2.3852 

17 5.63E+05 56318 5631.8 563.18 56.318 5.6318 0.56318 

18 1.33E+05 13338 1333.8 133.38 13.338 1.3338 0.13338 

19 31679 3167.9 316.79 31.679 3.1679 0.31679 0.031679 

R
e
so

lu
ti

o
n
 

20 7542.6 754.26 75.426 7.5426 0.75426 0.075426 0.007543 

From Excel, we obtain the critical values of R4 indicated in the Table 4 at which the 

noise contribution from phase Φ2 will be the same as the noise contribution from phase Φ1. 

From Table 4, it should be apparent that throughout much of the range, the switches will 

have impedances much smaller than the critical impedance and consequently the continuous-

time noise associated with the switches during the transfer mode will play little role and the 
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overall noise will be dominated by the switching noise. It can be observed, however, that at 

higher speeds and higher resolutions (shown in the green region), the continuous-time noise 

will be of concern as well. 

4.4 Charge-redistribution Structure 

For the charge-redistribution SC gain stage, shown again in Figure 40, we can derive 

a set of equations which are similar to those we obtained for the flip-around structure.  The 

clock phasing is as given in Figure 38.  

This structure has a nominal gain of  

 1

2

-FB
CA
C

=  (4.38) 

And a feedback factor for the amplifier of 

 2

1 2

C
C C

β =
+

 (4.39) 

 

 

C1

C2

Φ1

Φ1

Φ2
VIN VOUT

VREF

dΦ2 dΦ2
Φ1

 

Figure 40. Basic Switched-Capacitor Gain Stage 

The noise sources present during hold phase Φ2 are shown in the following figure. 

The sampled noise source present during phase Φ1, denoted at Vn1S, has an RMS 

value of 1/kT C .   
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Figure 41. Noise sources in basic gain stage during both clock phases 

With a routine analysis during phase Φ2, we obtain the output voltage expression 

 ( )1 1
1 4

2 2 1
4 1 4 1

2

1

1 1
OUT IN REF n n

C CV V dV V V
C C CsR C s R C s

GB C

⎛ ⎞
⎜ ⎟
⎜ ⎟= + + + ⎜ ⎟⎛ ⎞
+ + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (4.40) 

where the resistor R4 actually represents the sum of R3 and R4. It follows that the RMS output 

voltage due to R4 is given by 
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 (4.41) 

As before, the critical switch size of R4 for settling during the phase Φ2 is 

approximately given by 

 4
1

1R
C GBβ

=  (4.42) 

If we define the parameter θ to characterize how much smaller the resistor is than the critical 

value, then we can express R4 as 

 4
1

R
C GB
θ
β

=  (4.43) 
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substituting into the expression for the output voltage, we obtain 
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 (4.44) 

This integral is tedious but from MATLAB, the noise contributions summarized in 

Table 5 were obtained. This shows the RMS output voltage and the total sampled input-

referred RMS noise voltage relative to 1/kT C . Also shown in the Table 5 is the effective 

value of the input sampling capacitor. 

The corresponding input-referred noise voltage, when the output is sampled, is 

 
2

22
- 4-

1 1

ˆIN RMS OUT RMS
CkTV V

C C
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 (4.45) 

From the foregoing equations, we can get another table for charge distribution 

structure: 

Table 5. Noise contributions of switches during Φ2 

 β 

 1/3 1/5 1/9 
V4-5RMS 1.414 2.83 5.66 
V

IN-RMS 1.22 1.22 1.22 θ=1 
C

INEQ
 0.67C

1
0.67C

1
0.67C

1

V
4-5RMS 1.154 2.31 4.62 

V
IN-RMS 1.15 1.15 1.15 θ=1/2 

C
INEQ

 0.75C
1

0.75C
1

0.75C
1

V
4-5RMS 0.894 1.79 3.58 

V
IN-RMS 1.10 1.10 1.10 θ=1/4 

C
INEQ

 0.83C
1

0.83C
1

0.83C
1

V
4-5RMS 0 0 0 

V
IN-RMS 1 1 1 θ=0 

C
INEQ

 C
1
 C

1
 C

1
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Again we will determine the critical switch impedance as a function of the clock 

speed and the resolution of a data converter. It will be assumed that the time allocated to 

settling time is half of the clock period, that slewing can be neglected, that the RMS noise 

voltage can at most ½ LSB with a VREF of 1V, and that all of the sampling noise is 

determined by the capacitor C1. With these assumptions, the expressions for R4, GB and the 

kT/C noise, the Table 5 is obtained. 

For When θ=1, we can calculate 
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1 2 2ST
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 (4.46) 

substituting into the expression for R4, we finally obtain 

 ( )2 2

1
4 2 1 2 2STn

ST CLK

R
kT n f+

=
+ ln  (4.47) 

From Excel, we obtain the critical values of R4 indicated in the Table 6. Similar as in 

Table 4, the switches will have impedances much smaller than the critical impedance and 

consequently the continuous-time noise associated with the switches during the transfer 

mode will play little role and the overall noise will be dominated by the sample and hold 

noise. At higher speeds and higher resolutions, the continuous-time noise will dominate the 

total noise.  

4.5 Noise Accumulation of Multiple Stages in ADC 

In this section, we will investigate how the continuous and S/H noise propagate and 

accumulate between stages in a pipeline ADC.  



www.manaraa.com

 60 

 

 

SC stage n SC stage n+1
Routn

Vnshn

vcontn

 

Figure 42. Noise propagating between two stages in an ADC 

Table 6. Critical Switch Resistances for Continuous-Time Noise Accumulation 

   Frequency  
   100  1K  10K  100K  1M  10M  100M  

8  1.3841e+011  1.3841e+010 1.3841e+009 1.3841e+008 1.3841e+007 1.3841e+006  1.3841e+005 

9  3.1142e+010  3.1142e+009 3.1142e+008 3.1142e+007 3.1142e+006 3.1142e+005  31142  

10  7.0776e+009  7.0776e+008 7.0776e+007 7.0776e+006 7.0776e+005 70776  7077.6  

11  1.622e+009  1.622e+008 1.622e+007 1.622e+006 1.622e+005 16220  1622  

12  3.743e+008  3.743e+007 3.743e+006 3.743e+005 37430  3743  374.3  

13  8.6891e+007  8.6891e+006 8.6891e+005 86891  8689.1  868.91  86.891  

14  2.0274e+007  2.0274e+006 2.0274e+005 20274  2027.4  202.74  20.274  

15  4.7518e+006  4.7518e+005 47518  4751.8  475.18  47.518  4.7518  

16  1.1181e+006  1.1181e+005 11181  1118.1  111.81  11.181  1.1181  

17  2.6399e+005  26399  2639.9  263.99  26.399  2.6399  0.26399  

18  62524  6252.4  625.24  62.524  6.2524  0.62524  0.062524  

19  14849  1484.9  148.49  14.849  1.4849  0.14849  0.014849  

R
e
so

lu
tio

n

20  3535.6  353.56  35.356  3.5356  0.35356  0.035356  0.0035356  

 

As shown in Figure 42, the output of the n-th stage can be represented by an output 

resistor Routn, S/H noise as a dc voltage source Vnshn and continuous-time noise source Vcontn. 

The continuous-time noise is independent of Routn. The continuous-time noise is attributable 

to the switches and capacitors in the n-th stage. The Routn and vcontn come from two total 

different mechanisms, hence they are independent. The Routn may cause an additional noise 
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source, but it is ignored in this thesis. In the n+1st stage, the continuous-time noise source is 

sampled and can be represented by a dc voltage source. So the S/H noise and continuous-

time noise can be propagated as a dc voltage source to the output of the n+1st stage and their 

effects can be calculated separately from the noise of n+1st stage.  

4.6 Conclusion 

In the foregoing discussion, it was shown that although in all the past literature, only 

sample and hold noise from the sample phase Φ1 was considered, the continuous-time noise 

generated in the hold phase Φ2 can play an important role in determining the total noise that 

is present in a SC amplifier. The effects of the noise contributed during phase Φ2 were shown 

quantitively in Table 4 and Table 6. For both the flip-around structure and the charge-

redistribution structure, if the application requires high frequency or high resolution, the 

continuous-time noise will not be negligible and may actually become the major contributor 

to the total noise.  
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CHAPTER 5 SUMMARY 
Switched-capacitor circuits are widely used in today’s analog and mixed signal 

circuits. Although from a circuit design point the field has matured, simplifications in the 

noise analysis driven by conventional wisdom have resulted in an under-estimation of the 

actual noise present when those circuits are operated at high speeds. In particular, noise 

analysis present in the literature includes only the noise generated in the track phase and 

results in a very simple kT/C noise analysis. However, the continuous-time noise generated 

in the second phase (or hold phase) has not been included in the total noise.  

In this thesis, we have analyzed both the S/H noise and continuous-time noise in 

terms of power spectral density as well as in terms of a more complete kT/C analysis. 

Simulation results obtained from Cadence SpectreRF for the PSD analysis were presented as 

well. The simulation and hand analysis show that the continuous-time noise which is usually 

ignored in the past can contribute a lot and can even dominate the total noise of the SC gain 

stage at high frequencies or at high resolution. Evaluations were restricted to the flip-around 

SC gain stage and the charge-redistribution SC gain stage but similar concerns also exist for 

other SC amplifier structures.  
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